abstract
- This paper presents the mechanical design of a new robotic telescope that was designed and built to acquire lunar spectral measurements from the science pod of NASA's ER-2 aircraft while flying at an altitude of 70,000 feet (21.34 km). The robotic telescope used a double gimbal design that allowed for target tracking in azimuth and elevation. In addition to the challenging and restrictive geometry of the science pod, each component needed to be carefully selected to ensure that they could withstand the operating conditions at high altitude such as harsh temperatures extending as low as −54 °C and atmospheric pressure less than 1.05 psi (7.23 kPa). Due to the cold temperatures, low atmospheric pressure and the likely exposure to moisture, high strength industrial linear actuators were used to create an adjustable linkage system that controlled the pointing and tracking of the telescope. Although unconventional, this allowed for a robust design that outperformed the team's expectations by tracking the Moon for 40 min with an average tracking error under 0.05°. The results presented within this paper were acquired during a first set of engineering test flights, with further scientific missions to follow.