Calculation of radiation-induced DNA damage from photons and tritium beta-particles Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Yields of DNA single- and double-strand breaks (SSB and DSB) in nucleosomal DNA were calculated for 137Cs, 70 keV photons and tritium beta-particles by Monte Carlo means. Monte Carlo-generated electron tracks for liquid water were used to model energy deposition. Chemical evolution of a track and interactions between species and DNA following water radiolysis were modelled in an encounter-controlled manner. The calculated relative biological effectiveness (RBE) for DSB production for tritium against 137Cs was 1.2 for the total DSB yield. Tritium beta-particles were slightly more efficient compared to 137Cs in producing complex DSB, defined as DSB accompanied by additional strand breaks. The RBE for complex DSB formation was 1.3. Most complex DSB exhibited associated base damage; the extent of the base damage was similar for all the radiation types considered. Correlated DSB conforming to nucleosome periodicity were observed. However, their frequency was low, of the order of 2% of total DSB. For all the DNA damage endpoints considered and their response to variation of the scavenging environment or DNA conformation no difference was observed between 70 keV photons and tritium beta-particles.

publication date

  • March 25, 2001