Folding thermodynamics of the hybrid-1 type intramolecular human telomeric G-quadruplex Academic Article uri icon

  • Overview
  • Research
  • Identity
  • Additional Document Info
  • View All


  • Guanine-rich DNA sequences that may form G-quadruplexes are located in strategic DNA loci with the ability to regulate biological events. G-quadruplexes have been under intensive scrutiny owing to their potential to serve as novel drug targets in emerging anticancer strategies. Thermodynamic characterization of G-quadruplexes is an important and necessary step in developing predictive algorithms for evaluating the conformational preferences of G-rich sequences in the presence or the absence of their complementary C-rich strands. We use a combination of spectroscopic, calorimetric, and volumetric techniques to characterize the folding/unfolding transitions of the 26-meric human telomeric sequence d[A3G3(T2AG3)3A2]. In the presence of K+ ions, the latter adopts the hybrid-1 G-quadruplex conformation, a tightly packed structure with an unusually small number of solvent-exposed atomic groups. The K+-induced folding of the G-quadruplex at room temperature is a slow process that involves significant accumulation of an intermediate at the early stages of the transition. The G-quadruplex state of the oligomeric sequence is characterized by a larger volume and compressibility and a smaller expansibility than the coil state. These results are in qualitative agreement with each other all suggesting significant dehydration to accompany the G-quadruplex formation. Based on our volume data, 432±19 water molecules become released to the bulk upon the G-quadruplex formation. This large number is consistent with a picture in which DNA dehydration is not limited to water molecules in direct contact with the regions that become buried but involves a general decrease in solute-solvent interactions all over the surface of the folded structure.


  • Shek, Yuen Lai
  • Noudeh, Golamreza Dehghan
  • Nazari, Mozhgan
  • Heerklotz, Heiko
  • Abu-Ghazalah, Rashid
  • Dubins, David N
  • Chalikian, Tigran V

publication date

  • March 2014