Home
Scholarly Works
Excited states in the large density limit: a...
Journal article

Excited states in the large density limit: a variational approach

Abstract

Excited states of Bose–Einstein condensates are considered in the large density limit of the Gross–Pitaevskii equation with repulsive inter-atomic interactions and a harmonic potential. The relative dynamics of dark solitons (density dips on the localized condensate) with respect to the harmonic potential and to each other is approximated using the averaged Lagrangian method. This permits a complete characterization of the equilibrium positions of the dark solitons as a function of the chemical potential. It also yields an analytical handle on the oscillation frequencies of dark solitons around such equilibria. The asymptotic predictions are generalized for an arbitrary number of dark solitons and are corroborated by numerical computations for 2- and 3-soliton configurations.

Authors

Coles MP; Pelinovsky DE; Kevrekidis PG

Journal

Nonlinearity, Vol. 23, No. 8, pp. 1753–1770

Publisher

IOP Publishing

Publication Date

August 1, 2010

DOI

10.1088/0951-7715/23/8/001

ISSN

0951-7715

Contact the Experts team