Joint Charging, Routing, and Power Allocations in Rechargeable Wireless Sensor Networks Conferences uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Prolonging the battery lifetime of sensors has been one of the most important issues in wireless sensor networks (WSNs). With the development of Wireless Power Transfer (WPT) technology, sensors can be recharged and possibly have infinite lifetime. One common approach to achieving this is having a wireless charging vehicle (WCV) move in the system coverage area and charge sensors nearby when it stops. The duration that the WCV stays at each charging location, the amount of traffic that each sensor carries, and the transmission power of individual sensors are closely related, and their joint optimization affects not only the data transmissions in the WSN but also energy consumption of the system. This problem is formulated as a mixed integer and nonconvex optimization problem. Different from existing work that either solves similar problems using genetic algorithms or considers charging sensors based on clusters, we consider the optimum charging time for each sensor, and solve the joint communication and charging problem optimally. Numerical results demonstrate that our solution can significantly reduce the average power consumption of the system, compared to the cluster-based charging solution.

publication date

  • June 28, 2021