Sustainable conjunctive water management model for alleviating water shortage Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Water shortage poses a great challenge to the health of population and environment and impedes socio-economic development. Therefore, a comprehensive model is necessary to promote the adaptation of the whole socio-economic system to limited water resources. To achieve it, a sustainable conjunctive water management model (SCWM) was developed. In SCWM, direct (physical) and indirect (virtual or embodied) water consumptions of multiple water resources in future scenarios are projected, and the sustainable performances of various water-saving scenarios are quantified from the perspectives of water resources, economy, and ecosystem under water capping policy. A case study of Shaanxi, a typical water shortage province in central-eastern China, is conducted aimed at conquering the irrational use of surface- and ground-water subjected to the constraint of future total water use quota. Key findings contain optimal possibility of adapting water shortage via saving water through increasing industrial water efficiency to 11.12 m3/10,000 CNY and reducing 40% of agricultural final demand (Summation of direct and indirect water savings of the two scenarios are 41.57 × 108 m3 and 20.27 × 108 m3, respectively.) and nonsynergistic effects of simultaneous decreasing final demand of multiple sectors on water consumption intensity (WCI) of total (all kinds of water) water, surface- and ground-water. To devise effective policies for conjunctive management of surface- and ground-water, positive utility, economic structure and water productivity should be heeded, and proposals emphasize trade-offs between surface water saving and groundwater conservation, water metabolic and socio-economic systems sustainability and negative interaction of multiple sectors on economy and WCI should be framed. The innovation of this study is the development of SCWM, which can provide sustainable solution for future multiple-source water saving management measures thoroughly concerning direct and indirect water and sectorial interactions. The model not only brings insights to Shaanxi's water management but also can be used for other similar arid area.

authors

  • Hao, Rongjie
  • Huang, Gordon
  • Liu, Lirong
  • Li, Yongping
  • Li, Jizhe
  • Zhai, Mengyu

publication date

  • February 2022