Accretion and magnetic field morphology around Class 0 stage protostellar discs Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • We analyse simulations of turbulent, magnetised molecular cloud cores focussing on the formation of Class 0 stage protostellar discs and the physical conditions in their surroundings. We show that for a wide range of initial conditions Keplerian discs are formed in the Class 0 stage already. In particular, we show that even subsonic turbulent motions reduce the magnetic braking efficiency sufficiently in order to allow rotationally supported discs to form. We therefore suggest that already during the Class 0 stage the fraction of Keplerian discs is significantly higher than 50%, consistent with recent observational trends but significantly higher than predictions based on simulations with misaligned magnetic fields, demonstrating the importance of turbulent motions for the formation of Keplerian discs. We show that the accretion of mass and angular momentum in the surroundings of protostellar discs occurs in a highly anisotropic manner, by means of a few narrow accretion channels. The magnetic field structure in the vicinity of the discs is highly disordered, revealing field reversals up to distances of 1000 AU. These findings demonstrate that as soon as even mild turbulent motions are included, the classical disc formation scenario of a coherently rotating environment and a well-ordered magnetic field breaks down. Hence, it is highly questionable to assess the magnetic braking efficiency based on non-turbulent collapse simulation. We strongly suggest that, in addition to the global magnetic field properties, the small-scale accretion flow and detailed magnetic field structure have to be considered in order to assess the likelihood of Keplerian discs to be present.

publication date

  • January 21, 2015