EXAMPLES OF FREE ACTIONS ON PRODUCTS OF SPHERES Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • We construct a non-abelian extension $\Gamma$ of $S^1$ by $\cy 3 \times \cy 3$, and prove that $\Gamma$ acts freely and smoothly on $S^{5} \times S^{5}$. This gives new actions on $S^{5} \times S^{5}$ for an infinite family $\cP$ of finite 3-groups. We also show that any finite odd order subgroup of the exceptional Lie group $G_2$ admits a free smooth action on $S^{11}\times S^{11}$. This gives new actions on $S^{11}\times S^{11}$ for an infinite family $\cE $ of finite groups. We explain the significance of these families $\cP $, $\cE $ for the general existence problem, and correct some mistakes in the literature.

publication date

  • December 1, 2009