Ethylenecarbodiimide-fixed splenocytes carrying whole islet antigens decrease the incidence of diabetes in NOD mice <i>via</i> down-regulation of effector memory T cells and autoantibodies
Journal Articles
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
Type 1 diabetes mellitus (T1DM) is a syndrome of loss of glucose homeostasis caused by the loss of β cell chronic autoimmunity against islet cells. Islet-specific epitopes coupled antigen presenting cells by Ethylenecarbodiimide (ECDI) is a promising strategy to induce antigen-specific tolerance. However, single epitope induced tolerance is insufficient to prevent the onset of T1DM. The aim of this study is to evaluate the efficacy of whole islet antigens in preventing the onset and progression of T1DM and identify the underlying immune mechanism in NOD mice. In this study, the whole islet antigens, derived from islet lysate isolated from BALB/c mice, were coupled to splenocytes of BALB/c mice by ECDI fixation (SP-Islet lysate), and then intravenously administrated to NOD mice. The results showed that, compared with control group, SP-Islet lysate group significantly decreased T1DM incidence and improved the survival of NOD mice. SP-Islet lysate treated mice had reduced insulitis score and autoantibody levels, and improved glucose tolerance and insulin/glucagon production. Furthermore, the effector memory T cells (TEMs) were downregulated and regulatory T cells (Tregs) were upregulated by the SP-Islet lysate treatment, with reduced populations of Th1&Th17 cells. In conclusion, ECDI-fixed splenocytes carrying whole islet antigens effectively prevented the onset of T1DM in NOD mice, via suppressing the production of autoantibodies and inducing anergy of autoreactive T cells.