A Monte Carlo and physical phantom evaluation of quantitative In-111 SPECT
Journal Articles
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
Accurate estimation of the 3D in vivo activity distribution is important for dose estimation in targeted radionuclide therapy (TRT). Although SPECT can potentially provide such estimates, SPECT without compensation for image degrading factors is not quantitatively accurate. In this work, we evaluated quantitative SPECT (QSPECT) reconstruction methods that include compensation for various physical effects. Experimental projection data were obtained using a GE VH/Hawkeye system and an RSD torso phantom. Known activities of In-111 chloride were placed in the lungs, liver, heart, background and two spherical compartments with inner diameters of 22 mm and 34 mm. The 3D NCAT phantom with organ activities based on clinically derived In-111 ibritumomab tiuxetan data was used for the Monte Carlo (MC) simulation studies. Low-noise projection data were simulated using previously validated MC simulation methods. Fifty sets of noisy projections with realistic count levels were generated. Reconstructions were performed using the OS-EM algorithm with various combinations of attenuation (A), scatter (S), geometric response (G), collimator-detector response (D) and partial volume compensation (PVC). The QSPECT images from the various combinations of compensations were evaluated in terms of the accuracy and precision of the estimates of the total activity in each organ. For experimental data, the errors in organ activities for ADS and PVC compensation were less than 6.5% except the smaller sphere (-11.9%). For the noisy simulated data, the errors in organ activity for ADS compensation were less than 5.5% except the lungs (20.9%) and blood vessels (15.2%). Errors for other combinations of compensations were significantly (A, AS) or somewhat (AGS) larger. With added PVC, the error in the organ activities improved slightly except for the lungs (11.5%) and blood vessels (3.6%) where the improvement was more substantial. The standard deviation/mean ratios were all less than 1.5%. We conclude that QSPECT methods with appropriate compensations provided accurate In-111 organ activity estimates. For the collimator used, AGS was almost as good as ADS and may be preferable due to the reduced reconstruction time. PVC was important for small structures such as tumours or for organs in close proximity to regions with high activity. The improved quantitative accuracy from QSPECT methods has the potential for improving organ dose estimations in TRT.