Home
Scholarly Works
Municipal solid waste management planning...
Journal article

Municipal solid waste management planning considering greenhouse gas emission trading under fuzzy environment

Abstract

Waste management activities can release greenhouse gases (GHGs) to the atmosphere, intensifying global climate change. Mitigation of the associated GHG emissions is vital and should be considered within integrated municipal solid waste (MSW) management planning. In this study, a fuzzy possibilistic integer programming (FPIM) model has been developed for waste management facility expansion and waste flow allocation planning with consideration of GHG emission trading in an MSW management system. It can address the interrelationships between MSW management planning and GHG emission control. The scenario of total system GHG emission control is analyzed for reflecting the feature that GHG emission credits may be tradable. An interactive solution algorithm is used to solve the FPIM model based on the uncertainty-averse preferences of decision makers in terms of p-necessity level, which represents the certainty degree of the imprecise objective. The FPIM model has been applied to a hypothetical MSW planning problem, where optimal decision schemes for facility expansion and waste flow allocation have been achieved with consideration of GHG emission control. The results indicate that GHG emission credit trading can decrease total system cost through re-allocation of GHG emission credits within the entire MSW management system. This will be helpful for decision makers to effectively determine the allowable GHG emission permits in practices.

Authors

Zhang X; Huang G

Journal

Journal of Environmental Management, Vol. 135, , pp. 11–18

Publisher

Elsevier

Publication Date

March 15, 2014

DOI

10.1016/j.jenvman.2014.01.014

ISSN

0301-4797

Contact the Experts team