Efficient Video-based Vehicle Queue Length Estimation using Computer Vision and Deep Learning for an Urban Traffic Scenario Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • In the Intelligent Transportation System (ITS) realm, queue length estimation is one of an essential yet a challenging task. Queue lengths are important for determining traffic density in traffic lanes so that possible congestion in any lane can be minimized. Smart roadside sensors such as loop detectors, radars and pneumatic road tubes etc. are promising for such tasks though they have a very high installation and maintenance cost. Large scale deployment of surveillance cameras have shown a great potential in the collection of vehicular data in a flexible way and are also cost effective. Similarly, vision-based sensors can be used independently or if required can also augment the functionality of other roadside sensors to effectively process queue length at prescribed traffic lanes. In this research, a CNN-based approach for estimation of vehicle queue length in an urban traffic scenario using low-resolution traffic videos is proposed. The queue length is estimated based on count of total vehicles waiting on a signal. The proposed approach calculates queue length without the knowledge of any onsite camera calibration information. Average vehicle length is approximated to be 5 m. This caters for the vehicles at the far end of the traffic lane that appear smaller in the camera view. Identification of stopped vehicles is done using Deep SORT based object tracking. Due to robust and accurate CNN-based detection and tracking, the queue length estimated by using only the cameras has been very effective. This mostly eliminates the need for fusion with any roadside or in-vehicle sensors. A detailed comparative analysis of vehicle detection models including YOLOv3, YOLOv4, YOLOv5, SSD, ResNet101, and InceptionV3 was performed. Based on this analysis, YOLOv4 was selected as a baseline model for queue length estimation. Using the pre-trained 80-classes YOLOv4 model, an overall accuracy of 73% and 88% was achieved for vehicle count and vehicle count-based queue length estimation, respectively. After fine-tuning of model and narrowing the output classes to vehicle class only, an average accuracy of 83% and 93% was achieved, respectively. This shows the efficiency and robustness of the proposed approach.

authors

  • Umair, Muhammad
  • Farooq, Muhammad Umar
  • Raza, Rana Hammad
  • Chen, Qian
  • Abdulhai, Baher

publication date

  • October 2021