Somatic immunoglobulin sequence divergence and its implications for studies of evolutionary divergence Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • The divergence of immunoglobulin genes due to somatic mutation provides a natural example of DNA sequence divergence. This divergence was examined to gain insight into the processes of evolution and the determinants of the variance-to-mean ratio of sequence divergence. Normally, this ratio is found to be larger than expected (1.0 under Poisson assumptions) for the evolutionary divergence or most genes. Although not significantly less than one, all seven groups of immunoglobulin amino acid sequences have ratios smaller than expected, contrary to the evolutionary pattern generally observed. The substitutions in the immunoglobulin genes appear to be highly nonrandom and an excess of parallel changes (the major nonrandom feature of these mutations) is shown to cause smaller ratios. Because convergent or parallel mutations are often observed in the evolutionary divergence of genes, this suggests that forces causing the large observed ratios may actually have to be more powerful than previously expected. Further, since selection is one of the likely causes of parallel mutations, it should be noted that selection could significantly decrease the variance-to-mean ratio. The high frequency of parallel mutations and their resulting effects, as observed in the immunoglobulin genes, suggest that only poor inferences of sequence divergence can be made without actual knowledge of the ancestral sequence.Key words: molecular evolution, parallel mutations, neutral allele theory, sequence divergence, immunoglobulin, somatic mutations.

publication date

  • June 1, 1988

published in