Identifying non-traditional electronic datasets for population-level surveillance and prevention of cardiometabolic diseases: a scoping review protocol Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • IntroductionCardiometabolic diseases, including cardiovascular disease, obesity and diabetes, are leading causes of death and disability worldwide. Modern advances in population-level disease surveillance are necessary and may inform novel opportunities for precision public health approaches to disease prevention. Electronic data sources, such as social media and consumer rewards points systems, have expanded dramatically in recent decades. These non-traditional datasets may enhance traditional clinical and public health datasets and inform cardiometabolic disease surveillance and population health interventions. However, the scope of non-traditional electronic datasets and their use for cardiometabolic disease surveillance and population health interventions has not been previously reviewed. The primary objective of this review is to describe the scope of non-traditional electronic datasets, and how they are being used for cardiometabolic disease surveillance and to inform interventions. The secondary objective is to describe the methods, such as machine learning and natural language processing, that have been applied to leverage these datasets.Methods and analysisWe will conduct a scoping review following recommended methodology. Search terms will be based on the three central concepts of non-traditional electronic datasets, cardiometabolic diseases and population health. We will search EMBASE, MEDLINE, CINAHL, Scopus, Web of Science and Cochrane Library peer-reviewed databases and will also conduct a grey literature search. Articles published from 2000 to present will be independently screened by two reviewers for inclusion at abstract and full-text stages, and conflicts will be resolved by a separate reviewer. We will report this data as per the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews.Ethics and disseminationNo ethics approval is required for this protocol and scoping review, as data will be used only from published studies with appropriate ethics approval. Results will be disseminated in a peer-reviewed publication.

publication date

  • August 2021