Estimating common principal components in high dimensions Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • We consider the problem of minimizing an objective function that depends on an orthonormal matrix. This situation is encountered when looking for common principal components, for example, and the Flury method is a popular approach. However, the Flury method is not effective for higher dimensional problems. We obtain several simple majorization-minizmation (MM) algorithms that provide solutions to this problem and are effective in higher dimensions. We then use simulated data to compare them with other approaches in terms of convergence and computational time.

publication date

  • June 2014