Home
Scholarly Works
Kinetic Mechanism of Aminoglycoside...
Journal article

Kinetic Mechanism of Aminoglycoside Phosphotransferase Type IIIa EVIDENCE FOR A THEORELL-CHANCE MECHANISM(∗)

Abstract

Bacterial resistance to aminoglycoside-aminocyclitol antibiotics is mediated primarily by covalent modification of the drugs by a variety of enzymes. One such modifying enzyme, the 3'-aminoglycoside phosphotransferase, which is produced by Gram-positive cocci such as Enterococcus and Streptococcus inactivates a broad range of aminoglycosides by ATP-dependent phosphorylation of specific hydroxyl residues on the antibiotics. Through the use of dead-end and product inhibitor studies, we present the first detailed examination of the kinetic mechanism for the 3'-aminoglycoside phosphotransferase-IIIa. Initial velocity patterns deduced from steady-state kinetics indicate a sequential mechanism with ordered binding of ATP first followed by aminoglycoside. Dead-end inhibition by AMP and adenylyl-imidodiphosphate is competitive versus ATP and noncompetitive versus kanamycin A. Dead-end inhibition by tobramycin, a kanamycin analogue lacking a 3'-OH, is competitive versus both kanamycin A and uncompetitive versus ATP, indicative of ordered substrate binding where ATP must add prior to aminoglycoside addition. Product inhibition by kanamycin phosphate is noncompetitive versus ATP when kanamycin A is held at subsaturating concentrations (Km(kanA)), whereas no inhibition is observed when the concentration of kanamycin A is held at 10Km(kanA). This is consistent with kanamycin phosphate being the first product released followed by ADP release. The patterns of inhibition observed support a mechanism where ATP binding precedes aminoglycoside binding followed by a rapid catalytic step. Product release proceeds in an ordered fashion where kanamycin phosphate is released quickly followed by a slow release of ADP. Aminoglycoside substrates, such as kanamycin A, show substrate inhibition that is uncompetitive versus ATP. This indicates binding of the aminoglycosides to the slowly dissociating (E-ADP) complex at high drug concentrations. These experiments are consistent with a Theorell-Chance kinetic mechanism for 3'-aminoglycoside phosphotransferase-IIIa.

Authors

McKay GA; Wright GD

Journal

Journal of Biological Chemistry, Vol. 270, No. 42, pp. 24686–24692

Publisher

Elsevier

Publication Date

October 20, 1995

DOI

10.1074/jbc.270.42.24686

ISSN

0021-9258

Contact the Experts team