Home
Scholarly Works
Hoxa9 and Meis1 Cooperatively Induce Addiction to...
Journal article

Hoxa9 and Meis1 Cooperatively Induce Addiction to Syk Signaling by Suppressing miR-146a in Acute Myeloid Leukemia

Abstract

The transcription factor Meis1 drives myeloid leukemogenesis in the context of Hox gene overexpression but is currently considered undruggable. We therefore investigated whether myeloid progenitor cells transformed by Hoxa9 and Meis1 become addicted to targetable signaling pathways. A comprehensive (phospho)proteomic analysis revealed that Meis1 increased Syk protein expression and activity. Syk upregulation occurs through a Meis1-dependent feedback loop. By dissecting this loop, we show that Syk is a direct target of miR-146a, whose expression is indirectly regulated by Meis1 through the transcription factor PU.1. In the context of Hoxa9 overexpression, Syk signaling induces Meis1, recapitulating several leukemogenic features of Hoxa9/Meis1-driven leukemia. Finally, Syk inhibition disrupts the identified regulatory loop, prolonging survival of mice with Hoxa9/Meis1-driven leukemia.

Authors

Mohr S; Doebele C; Comoglio F; Berg T; Beck J; Bohnenberger H; Alexe G; Corso J; Ströbel P; Wachter A

Journal

Cancer Cell, Vol. 31, No. 4, pp. 549–562.e11

Publisher

Elsevier

Publication Date

April 10, 2017

DOI

10.1016/j.ccell.2017.03.001

ISSN

1535-6108

Contact the Experts team