HighâResolution Imaging of Molecular Gas and Dust in the Antennae (NGC 4038/39): Super Giant Molecular Complexes
Journal Articles
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
We present new aperture synthesis CO maps of the Antennae (NGC 4038/39)
obtained with the Caltech Millimeter Array. These sensitive images show
molecular emission associated with the two nuclei and a partial ring of star
formation to the west of NGC 4038, as well as revealing the large extent of the
extra-nuclear region of star formation (the ``overlap region''), which
dominates the CO emission from this system. The largest molecular complexes
have masses of 3-6x10^8 M_sun, typically an order of magnitude larger than the
largest structures seen to date in more quiescent galaxy disks. The extremely
red luminous star clusters identified previously with HST are well-correlated
with the CO emission, which supports the conclusion that they are highly
embedded young objects rather than old globular clusters. There is an excellent
correlation between the CO emission and the 15 micron emission seen with ISO,
particularly for the brightest regions. The most massive complexes in the
overlap region have similar [NeIII]/[NeII] ratios, which implies that all these
regions are forming many massive stars. However, only the brightest
mid-infrared peak shows strong, rising continuum emission longward of 10
microns, indicative of very small dust grains heated to high temperatures by
their proximity to nearby luminous stars. Since these grains are expected to be
removed rapidly from the immediate environment of the massive stars, it is
possible that this region contains very young (< 1 Myr) sites of star
formation. Alternatively, fresh dust grains could be driven into the sphere of
influence of the massive stars, perhaps by the bulk motions of two giant
molecular complexes. The kinematics and morphology of the CO emission in this
region provide some support for this second scenario.