Comparative Analysis of Molecular Clouds in M31, M33, and the Milky Way Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • We present BIMA observations of a 2$\arcmin$ field in the northeastern spiral arm of M31. In this region we find six giant molecular clouds that have a mean diameter of 57$\pm$13 pc, a mean velocity width of 6.5$\pm$1.2 \kms, and a mean molecular mass of 3.0 $\pm$ 1.6 $\times$ 10$^5$\Msun. The peak brightness temperature of these clouds ranges from 1.6--4.2 K. We compare these clouds to clouds in M33 observed by \citet{wilson90} using the OVRO millimeter array, and some cloud complexes in the Milky Way observed by \cite{dame01} using the CfA 1.2m telescope. In order to properly compare the single dish data to the spatially filtered interferometric data, we project several well-known Milky Way complexes to the distance of Andromeda and simulate their observation with the BIMA interferometer. We compare the simulated Milky Way clouds with the M31 and M33 data using the same cloud identification and analysis technique and find no significant differences in the cloud properties in all three galaxies. Thus we conclude that previous claims of differences in the molecular cloud properties between these galaxies may have been due to differences in the choice of cloud identification techniques. With the upcoming CARMA array, individual molecular clouds may be studied in a variety of nearby galaxies. With ALMA, comprehensive GMC studies will be feasible at least as far as the Virgo cluster. With these data, comparative studies of molecular clouds across galactic disks of all types and between different galaxy disks will be possible. Our results emphasize that interferometric observations combined with the use of a consistent cloud identification and analysis technique will be essential for such forthcoming studies that will compare GMCs in the Local Group galaxies to galaxies in the Virgo cluster.

publication date

  • March 2008