Progressive effect of endurance training on VO2 kinetics at the onset of submaximal exercise Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • The rates of increase in O2 uptake (VO2) after step changes in work rate from 25 W to 60% of pretraining peak VO2 (VO2 peak) were measured at various times during an endurance training program (2 h/day at 60% pretraining VO2 peak). Seven untrained males [23 +/- 1 (SE) yr] performed a series of repeated step changes in work rate before training (PRE) and after 4 days (4D), 9 days (9D), and 30 days (30D) of training. VO2 kinetic responses were determined from breath-by-breath data averaged across four repetitions and analyzed using a two-component exponential model. Mean response time (time taken to reach 63% of steady-state VO2) was faster (P < 0.01) than PRE (38.1 +/- 2.6 s) at both 4D (34.9 +/- 2.4 s) and 9D (32.5 +/- 1.8 s) and was faster (P < 0.01) at 30D than at all other times (28.3 +/- 1.0 s). Blood lactate concentrations (after 6 min of cycling) were also lower at 4D and 9D than PRE (P < 0.01) and were lower at 30D than at all other times (P < 0.01). VO2 peak was unchanged from PRE (3.52 +/- 0.20 l/min) at 8D (3.55 +/- 0.20 l/min) but was increased (P < 0.01) at 30D (3.89 +/- 0.18 l/min). Muscle oxidative capacity (maximal citrate synthase activity) was not significantly increased until 30D (P < 0.01). It is concluded that at least part of the acceleration of whole body VO2 kinetics with endurance training is a rapid phenomenon, occurring before changes in VO2 peak and/or muscle oxidative potential.

publication date

  • December 1995