Comparison of Aerosol and Intranasal Challenge in a Mouse Model of Allergic Airway Inflammation and Hyperresponsiveness Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • BACKGROUND: The aim was to optimize antigen challenge for induction of airway hyperresponsiveness (AHR) and inflammation in BALB/c mice sensitized to ovalbumin (OVA). Comparisons were made between mice challenged with OVA either as an aerosol or intranasally. The protocol that induced maximal AHR in BALB/c mice was thereafter tested in C57BL/6 mice. METHOD: Methacholine responsiveness was measured using the flexiVent® system to assess AHR. Inflammatory responses were investigated by histology and cell counts in bronchoalveolar lavage (BAL) fluid. RESULTS: 48 h after challenge with 1 or 6% OVA aerosols, there were similar increments in AHR and BAL cells, predominantly eosinophils. When comparing the effect of 1% OVA aerosol on AHR and cell infiltration at 24 and 48 h after challenge, the responses were similar. At 24 h, intranasal OVA administration (20-200 μg) caused a dose-dependent increase in AHR. BAL cells were increased by all intranasal OVA doses and to a greater extent than after 1% OVA aerosol challenge but without any dose dependency. Histological examination confirmed that there was an increase of eosinophils in lung tissue following either challenge. In C57BL/6 mice, baseline tissue elastance was the only functional outcome that was increased after intranasal OVA challenge. Even though the AHR response was negligible in C57BL/6 mice, a similar infiltration of BAL cells was observed in both strains. CONCLUSION: Intranasal challenge was more effective than aerosol challenge at inducing both AHR and airway inflammation in BALB/c mice. Although intranasal challenge caused airway inflammation in C57BL/6 mice, this strain is not optimal for studying AHR.

authors

  • Swedin, Linda
  • Ellis, Russ
  • Kemi, Cecilia
  • Ryrfeldt, Åke
  • Inman, Mark David
  • Dahlén, Sven-Erik
  • Adner, Mikael

publication date

  • 2010