In situ dynamic vulcanization process in preparation of electrically conductive PP/EPDM thermoplastic vulcanizate/expanded graphite nanocomposites: Effects of state of cure Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • AbstractIn situ melt dynamic vulcanization process has been employed to prepare electrically conductive polypropylene (PP)/ethylene–propylene–diene rubber (EPDM) (40/60 wt %) thermoplastic vulcanizates (TPVs) incorporated by expanded graphite (EG) as a conductive filler. Maleic anhydride grafted PP (PP‐g‐MAH) was used as compatibilizer and a sulfur curing system was designed and incorporated to vulcanize the EPDM phase during mixing process. Developed microstructures were characterized using scanning electron microscopy (SEM), melt rheomechanical spectroscopy (RMS), X‐ray diffraction (XRD), and transmission electron microscopy (TEM) and were correlated with electrical conductivity behavior. For comparison, another class of TPV/EG nanocomposites was fabricated using a commercially available PP/EPDM‐based TPV via both direct and masterbatch melt mixing process. Conductivity of the nanocomposites prepared by in situ showed no significant change during dynamic vulcanization till the mixing torque reached to the stationary level where micro‐morphology of the cured rubber droplets was fully developed, and conductivity abrupt was observed. In situ cured nanocomposites showed higher insulator to conductor transition threshold (3.15 vol % EG) than those based on commercially available TPV. All electrically conductive in situ prepared TPV nanocomposites exhibited reinforced melt elasticity with pseudosolid‐like behavior within low frequency region in dynamic melt rheometry indicating formation of physical networks by both EG nanolayers and crosslinked EPDM droplets. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011

authors

  • Ranjbar, Behnaz
  • Mirzazadeh, Hosein
  • Katbab, Ali Asghar
  • Hrymak, Andrew

publication date

  • January 5, 2012