EELS study of niobium carbo-nitride nano-precipitates in ferrite Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Micro-alloying steels allow higher strength to be achieved, with lower carbon contents, without a loss in toughness, weldability or formability through the generation of a fine ferrite grain size with additional strengthening being provided by the fine scale precipitation of complex carbo-nitride particles. Niobium is reported to be the most efficient micro-alloying element to achieve refinement of the final grain structure. A detailed microscopic investigation is one of the keys for understanding the first stages of the precipitation sequence, thus transmission electron microscopy (TEM) is required. Model Fe-(Nb,C) and Fe-(Nb,C,N) ferritic alloys have been studied after annealing under isothermal conditions. However the nanometre scale dimensions of the particles makes their detection, structural and chemical characterization delicate. Various imaging techniques have then been employed. Conventional TEM (CTEM) and high resolution TEM (HRTEM) were used to characterise the morphology, nature and repartition of precipitates. Volume fractions and a statistical approach to particle size distributions of precipitates have been investigated by energy filtered TEM (EFTEM) and high angle annular dark field (HAADF) imaging. Great attention was paid to the chemical analysis of precipitates; their composition has been quantified by electron energy loss spectroscopy (EELS), on the basis of calibrated 'jump-ratios' of C-K and N-K edges over the Nb-M edge, using standards of well-defined compositions. It is shown that a significant addition of nitrogen in the alloy leads to a complex precipitation sequence, with the co-existence of two populations of particles: pure nitrides and homogeneous carbo-nitrides respectively.

publication date

  • July 2006

published in