Isolation and characterization of cotiaractivase, a novel low molecular weight prothrombin activator from the venom of Bothrops cotiara Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • In this study, we isolated a novel prothrombin activator from the venom of Bothrops cotiara, a Brazilian lance-headed pit viper (Cotiara, Jararaca preta, Biocotiara), which we have designated "cotiaractivase" (prefix: cotiar- from B. cotiara; suffix: -activase, from prothrombin activating activity). Cotiaractivase was purified using a phenyl-Superose hydrophobic interaction column followed by a Mono-Q anion exchange column. It is a single-chain polypeptide with a molecular weight of 22,931 Da as measured by mass spectroscopy. Cotiaractivase generated active alpha-thrombin from purified human prothrombin in a Ca2+-dependent manner as assessed by S2238 chromogenic substrate assay and SDS-PAGE. Cotiaractivase cleaved prothrombin at positions Arg271-Thr272 and Arg320-Ile321, which are also cleaved by factor Xa. However, the rate of thrombin generation by cotiaractivase was approximately 60-fold less than factor Xa alone and 17 x 10(6)-fold less than the prothrombinase complex. The enzymatic activity of cotiaractivase was inhibited by the chelating agent EDTA, whereas the serine protease inhibitor PMSF had no effect on its activity, suggesting that it is a metalloproteinase. Interestingly, S2238 inhibited cotiaractivase activity non-competitively, suggesting that this toxin contains an exosite that allows it to bind prothrombin independently of its active site. Tandem mass spectrometry and N-terminal sequencing of purified cotiaractivase identified peptides that were identical to regions of the cysteine-rich and disintegrin-like domains of known snake venom metalloproteinases. Cotiaractivase is a unique low molecular weight snake venom prothrombin activator that likely belongs to the metalloproteinase family of proteins.

authors

  • Senis, Yotis A
  • Kim, Paul
  • Fuller, Gemma LJ
  • García, Ángel
  • Prabhakar, Sripadi
  • Wilkinson, Mark C
  • Brittan, Helen
  • Zitzmann, Nicole
  • Wait, Robin
  • Warrell, David A
  • Watson, Steve P
  • Kamiguti, Aura S
  • Theakston, R David G
  • Nesheim, Michael E
  • Laing, Gavin D

publication date

  • May 2006