Home
Scholarly Works
Characterization of dietary Ni uptake in the...
Journal article

Characterization of dietary Ni uptake in the rainbow trout, Oncorhynchus mykiss

Abstract

We characterized dietary Ni uptake in the gastrointestinal tract of rainbow trout using both in vivo and in vitro techniques. Adult trout were fed a meal (3% of body mass) of uncontaminated commercial trout chow, labeled with an inert marker (ballotini beads). In vivo dietary Ni concentrations in the supernatant (fluid phase) of the gut contents averaged from 2 micromoll(-1) to 24 micromoll(-1), and net overall absorption efficiency of dietary Ni was approximately 50% from the single meal, similar to that for the essential metal Cu, adding to the growing evidence of Ni essentiality. The stomach and mid-intestine emerged as important sites of Ni uptake in vivo, accounting for 78.5% and 18.9% of net absorption respectively, while the anterior intestine was a site of net secretion. Most of the stomach uptake occurred in the first 4h. In vitro gut sac studies using radiolabeled Ni (at 30 micromoll(-1)) demonstrated that unidirectional uptake occurred in all segments, with area-weighted rates being highest in the anterior intestine. Differences between in vivo and in vitro results likely reflect the favourable uptake conditions in the stomach, and biliary secretion of Ni in the anterior intestine in vivo. The concentration-dependent kinetics of unidirectional Ni uptake in vitro were biphasic in nature, with a saturable Michaelis-Menten relationship observed at 1-30 micromoll(-1) Ni (K(m) - 11 micromoll(-1), J(max) - 53 pmolcm(-2)h(-1) in the stomach and K(m) - 42 micromoll(-1), J(max) - 215 pmolcm(-2)h(-1) in the mid-intestine), suggesting mediation by a channel or carrier process. A linear uptake relationship was seen at higher concentrations, indicative of simple diffusion. Ni uptake (at 30 micromoll(-1)) into the blood compartment was significantly reduced in the stomach by high Mg (50 mmoll(-1)), and in the mid-intestine by both Mg (50 mmoll(-1)) and Ca (50 mmoll(-1)). In both regions, kinetic analysis demonstrated reductions in J(max) with unchanged K(m), suggesting non-competitive interactions. Therefore the Mg and Ca content of the food will be an important consideration affecting the availability of Ni.

Authors

Leonard EM; Nadella SR; Bucking and C; Wood CM

Journal

Aquatic Toxicology, Vol. 93, No. 4, pp. 205–216

Publisher

Elsevier

Publication Date

July 26, 2009

DOI

10.1016/j.aquatox.2009.05.002

ISSN

0166-445X

Contact the Experts team