abstract
- Experiments on freshwater rainbow trout, Oncorhynchus mykiss, demonstrated how digestion affected the transcriptional expression of gastrointestinal transporters following a single satiating meal (~3% body mass ration) after a 1-week fast. Quantitative real-time polymerase chain reaction was employed to measure the relative mRNA expression of three previously cloned and sequenced transporters [H(+)-K(+)-ATPase (HKA), Na(+)/HCO(3)(-) cotransporter (NBC), and the Rhesus glycoprotein (Rhbg1; an ammonia transporter)] over a 24-h time course following feeding. Plasma total ammonia increased about threefold from pre-feeding levels to 288 μmol l(-1), whereas total ammonia levels in chyme supernatant reached a sixfold higher value (1.8 mmol l(-1)) than plasma levels. Feeding did not appear to have a statistically significant effect on the relative mRNA expression of the gastric HKA or Rhbg1. However, the relative mRNA expression of gastric NBC was increased 24 h following the ingestion of a meal. Along the intestinal tract, feeding increased the relative mRNA expression of Rhbg1, but had no effect on the expression of NBC. Expression of the gastric HKA was undetectable in the intestinal tract of freshwater rainbow trout. Digestion increased the activity of glutamine synthetase in the posterior intestine at 12 and 24 h following feeding. This study is among the first to show that there are digestion-associated changes in gene expression and enzyme activity in the gastrointestinal tract of teleost fish illustrating the dynamic plasticity of this organ. These post-prandial changes occur over the relative short-term duration of digesting a single meal.