abstract
- An analytical growth model is presented to explain the influence of antimony fractional flux on the morphology evolution of catalyst-free InAs1-x Sb x semiconductor nanowires grown by the selective-area vapor-solid mechanism on a Si (111) substrate by molecular beam epitaxy. Increasing Sb fractional flux promoted radial growth and suppressed axial growth, resulting in 'nano-disks'. This behavior is explained by a model of indium adatom diffusion along nanowire facets.