T Cells Engineered with a Novel Chimeric Receptor Demonstrate Durable In Vivo Efficacy Against Disseminated Multiple Myeloma Conferences uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Abstract Despite recent therapeutic developments, multiple myeloma remains an incurable plasma cell malignancy. Poor prognosis for myeloma patients relapsing post-transplant calls for the need for novel treatment options. Immunotherapy with engineered T cells has proven highly efficacious against B-cell cancers, and early-phase clinical trials suggest that multiple myeloma is susceptible to this form of therapy. We designed a new chimeric T cell receptor, T cell antigen coupler (TAC), which relies upon activation through endogenous T cell receptor complex, thus allowing engineered T cells to auto-regulate their activity (Helsen et al, Nat. Comm., 2018). Using published single-chain antibody fragments (scFvs) C11D5.3 and J22.9-xi, we generated B cell maturation antigen (BCMA)-specific TAC receptors for targeting multiple myeloma. Primary human T cells were transduced with lentiviral vectors carrying different BCMA TAC constructs and assessed for in vitro functionality via cytokine production, cytotoxicity, and proliferation assays. In vivo efficacy and T cell tracking were performed in an established orthotopic xenograft mouse model based on a BCMA-positive KMS-11 cell line. C11D5.3 and J22.9-xi TAC T cells demonstrated comparable in vitro performance with both types of cultures efficiently killing BCMA-expressing targets, producing IFN-γ, TNF-α, and IL-2 cytokines, and undergoing multiple rounds of proliferation. In vivo, TAC T cells carrying either scFv were capable of curing mice bearing disseminated myeloma; however, the TAC T cells carrying J22.9-xi scFv were more potent on a per-cell basis (Figure 1A, top panel). Mice in remission 3 months post-treatment with a single dose of 106 TAC-positive T cells showed evidence of sustained anti-tumor protection upon rechallenge with a fresh dose of 106 KMS-11 tumor cells (Figure 1B). Mice treated with low-dose J22.9-xi T cells were more resistant to rechallenge than mice treated with a comparable dose of C11D5.3 TAC T cells. Tracking of the TAC T cells in vivo revealed that the J22.9-xi TAC T cells expanded to a much larger extent than the C11D5.3 TAC T cells (Figure 1A, bottom panel), indicating that there were likely more J22.9-xi TAC T cells present at the time of tumor rechallenge. To understand whether biological aspects of BCMA may influence the proliferative response of the TAC T cells, we explored the influence of APRIL, the soluble ligand for BCMA, on TAC T cell proliferation in vitro. Strikingly, despite comparable proliferation of both TAC T cell populations following stimulation with KMS-11 tumor cells in the absence of APRIL in vitro, the presence of APRIL had a strong inhibitory effect on proliferation of C11D5.3 TAC T cells and only a modest inhibitory effect on J22.9-xi TAC T cells. Our preclinical findings support further development of TAC T cells for the treatment of multiple myeloma and underscore the importance of T cell expansion in determining the therapeutic activity of engineered T cells. This work further reveals a novel observation that the natural ligand of BCMA can impair the therapeutic impact of T cells engineered with chimeric receptors directed against BCMA and provide a basis for advancing BCMA-specific TAC T cells into the clinic. Disclosures Denisova: Triumvira Immunologics: Patents & Royalties. Afsahi:Triumvira Immunologics: Patents & Royalties. Helsen:Triumvira Immunologics: Employment, Patents & Royalties. Bramson:Triumvira Immunologics: Employment, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties, Research Funding.

authors

  • Bezverbnaya, Ksenia
  • Lau, Vivian
  • Aarts, Craig
  • Denisova, Galina
  • Afsahi, Arya
  • Evelegh, Carole
  • Cummings, Derek
  • Helsen, Christopher
  • Bramson, Jonathan

publication date

  • November 29, 2018

published in