Home
Scholarly Works
Masking Faults While Providing Bounded-Time Phased...
Conference

Masking Faults While Providing Bounded-Time Phased Recovery

Abstract

We focus on synthesis techniques for transforming existing fault-intolerant real-time programs to fault-tolerant programs that provide phased recovery. A fault-tolerant program is one that satisfies its safety and liveness specifications as well as timing constraints in the presence of faults. We argue that in many commonly considered programs (especially in mission-critical systems), when faults occur, simple recovery to the program’s normal behavior is necessary, but not sufficient. For such programs, it is necessary that recovery is accomplished in a sequence of phases, each ensuring that the program satisfies certain properties. In this paper, we show that, in general, synthesizing fault-tolerant real-time programs that provide bounded-time phased recovery is NP-complete. We also characterize a sufficient condition for cases where synthesizing fault-tolerant real-time programs that provide bounded-time phased recovery can be accomplished in polynomial-time in the size of the input program’s region graph.

Authors

Bonakdarpour B; Kulkarni SS

Series

Lecture Notes in Computer Science

Volume

5014

Pagination

pp. 374-389

Publisher

Springer Nature

Publication Date

July 21, 2008

DOI

10.1007/978-3-540-68237-0_26

Conference proceedings

Lecture Notes in Computer Science

ISSN

0302-9743

Labels

View published work (Non-McMaster Users)

Contact the Experts team