abstract
- INTRODUCTION: We have previously shown that even a single course of antenatal betamethasone (BET) as an inductor for lung maturity reduces birth weight and head circumference. Moreover, animal studies link BET administration to alterations of the hypothalamic-pituitary-adrenal-gland-axis (HPA). The unhindered development of the fetal HPA axis is dependent on the function and activity of 11β-hydroxysteroiddehydrogenase type 2 (11β-HSD2), a transplacental cortisol barrier. Therefore, we investigated the effects of BET on this transplacental barrier and fetal growth. METHODS: Pregnant women treated with a single course of BET between 23 + 5 to 34 + 0 weeks of gestation were compared to gestational-age-matched controls. Placental size and neonatal anthropometrics were taken. Cortisol and ACTH levels were measured in maternal and umbilical cord blood samples. Placental 11β-hydroxysteroiddehydrogenase type 1 (11β-HSD1) protein levels and 11β-HSD2 protein and activity levels were determined. Parameters were analyzed independent of sex, and in subgroups divided by gender and gestational age. RESULTS: In term born females, BET administration was associated with reduced head circumference and decreased 11β-HSD2 protein levels and enzyme activity. Males treated with BET, especially those born prematurely, showed increased 11β-HSD2 protein levels. CONCLUSION: A single course of BET alters placental glucocorticoid metabolism in a sex-specific manner. Decreased 11β-HSD2 levels in term born females may lead to an increased placental transfer of maternal cortisol and therefore result in a reduced head circumference and a higher risk for altered stress response in adulthood. Further research is needed to conclude the significance of increased 11β-HSD2 levels in males.