Sensorimotor integration in healthy aging: Baseline differences and response to sensory training
Journal Articles
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
Sensorimotor integration is the process through which somatosensory information is incorporated to inform motor output. Given its important behavioural implications, understanding the influence of healthy aging on the underlying neurophysiology of sensorimotor integration and whether it is modifiable through intervention is important. The aims of the current work were to: 1) profile aging-related differences in sensorimotor integration, and 2) to determine if sensorimotor integration in older adults can be modulated in response to sensory training. A group of older healthy individuals and younger healthy individuals participated in two experimental sessions. First, baseline neurophysiology of sensorimotor integration was assessed. Short-latency afferent inhibition, afferent facilitation, and long-latency afferent inhibition provided nerve-based assessment of sensorimotor integration. Vibration-based measures of sensorimotor integration combined vibration of abductor pollicis brevis with single and paired-pulse transcranial magnetic stimulation techniques. In the second experimental session, a 15-min block of sensory training designed to modulate sensorimotor integration preceded the same neurophysiological assessment. Results indicate that there are aging-related differences in nerve-based measures of sensorimotor integration, specifically short- and long-latency afferent inhibition. In contrast, there are not aging-related differences when peripheral muscle belly vibration is used to probe sensorimotor integration. Following sensory training there is a reduction in the cortical response to vibration. These results suggest that there is differential aging-related modulation of sensorimotor integration, based on the type of afferent information. Additionally, sensorimotor integration is modifiable with a single session of sensory training, and this ability for neuroplastic change is retained with healthy aging.