The Effect of 2,3,7,8-Tetrachlorodibenzo-p-dioxin on Corticotrophin-Releasing Hormone, Arginine Vasopressin, and Pro-opiomelanocortin mRNA Levels in the Hypothalamus of the Cynomolgus Monkey
Journal Articles
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a widespread environmental contaminant that has profound deleterious effects on development and reproduction. TCDD may act at one or more levels to alter the hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-gonadal (HPG) axes. The objective of this study was to investigate whether TCDD modulates neuroendocrine systems by altering gene expression of arginine vasopressin (AVP), corticotrophin-releasing hormone (CRH), or pro-opiomelanocortin (POMC), which are important neuroregulators of the HPA and HPG axes. Four groups of female cynomolgus monkeys (Macaca fascicularis) were administered daily oral doses of gelatin capsule containing TCDD (0, 1, 5, or 25 ng/kg body weight) mixed with glucose 5 days a week for 1 year. At the end of the dosing period, animals were euthanized and brains were harvested. CRH, AVP, and POMC mRNA levels were semiquantified by in situ hybridization histochemistry on 30-microm coronal sections of the brain. Blood collected on the day of euthanasia was assayed for cortisol and progesterone. CRH mRNA levels in the paraventricular nucleus (PVN) were significantly increased by the 2 higher TCDD doses (5 and 25 ng/kg/day) compared to controls (p < 0.05). There was a trend towards increased AVP mRNA levels in both the supraoptic nucleus (SON) and PVN. No effect of TCDD on POMC was observed. Cortisol levels were significantly increased in TCDD-exposed animals. Progesterone concentrations and menstruation data indicated that TCDD did not interfere with ovulation. We conclude that TCDD stimulated the HPA axis by a central effect involving CRH, but had no effect on the HPG axis at the doses tested.