Home
Scholarly Works
Molecular clues into the pathogenesis of...
Journal article

Molecular clues into the pathogenesis of statin‐mediated muscle toxicity

Abstract

The pathophysiology of statin-mediated muscle dysfunction is poorly defined. Reductions in skeletal muscle membrane cholesterol were initially thought to account for the range of myopathic reactions, e.g., myalgia, elevated serum creatine kinase, or rhabdomyolysis. This assumption however, does not consider a potential role of the isoprenoids in the pathophysiology of statin myopathy. The observation that derangements in mevalonate kinase (MK), but not more distal enzymes of cholesterologenesis, are associated with a skeletal myopathy suggests a critical role for the isoprenoids in the maintenance of muscle. Statins also deplete the isoprenoid pool by inhibiting the enzyme, beta-hydroxy-beta-methylglutaryl coenzyme A reductase, which is upstream of MK. Identifying candidate proteins that are both dependent on isoprenoid-mediated modification and associated with muscle disease, when genetically mutated, offers further insight into potential mechanisms of statin myopathy. For example, lamin A/C, selenoprotein N, alpha- and beta-dystroglycan, and cytoskeletal G-proteins all require isoprenylation for optimal function. Understanding the pleiotropic effects of protein prenylation, and the potential consequences of a generalized insufficiency of this form of protein modification, may help clarify the molecular pathogenesis of statin myopathy.

Authors

Baker SK

Journal

Muscle & Nerve, Vol. 31, No. 5, pp. 572–580

Publisher

Wiley

Publication Date

May 1, 2005

DOI

10.1002/mus.20291

ISSN

0148-639X

Contact the Experts team