Behavioral effects of non-viral mediated RNA interference of synapsin II in the medial prefrontal cortex of the rat Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Synapsin II is a synaptic vesicle-associated phosphoprotein that has been implicated in the pathophysiology of schizophrenia. Researchers have demonstrated reductions in synapsin II mRNA and protein in post-mortem prefrontal cortex and hippocampus samples from patients with schizophrenia. Synapsin II protein expression has been shown to be regulated by dopamine D(1) and D(2) receptor activation. Furthermore, behavioral testing of the synapsin II knockout mouse has revealed a schizophrenic-like behavioral phenotype in this mutant strain, suggesting a relationship between dysregulated and/or reduced synapsin II and schizophrenia. However, it remains unknown the specific regions of the brain of which perturbations in synapsin II play a role in the pathophysiology of this disease. The aim of this project was to evaluate animals with a selective knock-down of synapsin II in the medial prefrontal cortex through the use of siRNA technology. Two weeks after continuous infusion of synapsin II siRNAs, animals were examined for the presence of a schizophrenic-like behavioral phenotype. Our results reveal that rats with selective reductions in medial prefrontal cortical synapsin II demonstrate deficits in sensorimotor gating (prepulse inhibition), hyperlocomotion, and reduced social behavior. These results implicate a role for decreased medial prefrontal cortical synapsin II levels in the pathophysiology of schizophrenia and the mechanisms of aberrant prefrontal cortical circuitry, and suggest that increasing synapsin II levels in the medial prefrontal cortex may potentially serve as a novel therapeutic target for this devastating disorder.

authors

  • Dyck, Bailey A
  • Tan, Mattea L
  • Daya, Ritesh P
  • Basu, Dipannita
  • Sookram, Christal DR
  • Thomas, Nancy
  • Mishra, Ram

publication date

  • May 2012