abstract
- Interferon regulatory factor 7 (IRF-7) plays a crucial role in virus-induced activation of interferon-alpha/beta transcription in mammals. This work describes a structural and functional homologue of mammalian IRF-7 from Atlantic salmon. The cloned gene encodes a putative protein of 415 amino acids (aa), which groups with mammalian IRF-7 and other fish IRF-7-like proteins in a phylogenetic analysis of vertebrate IRFs. Using an IFN promoter-luciferase assay we showed that salmon IRF-7 gave increased promoter activity after poly I:C stimulation. Transcript levels of IRF-7 were measured by real-time RT-PCR and compared to those of signal transducer and activator of transcription 1 (STAT1), which is important for transcriptional activation of IFN stimulated genes. Recombinant salmon IFN-alpha1 and poly I:C proved to be potent inducers of IRF-7 in Atlantic salmon TO cells, and poly I:C also induced the gene in head kidney and liver of Atlantic salmon. STAT1 was also induced by IFN, but was only weakly induced by poly I:C stimulation in vitro. Differences in transcription kinetics between IRF-7 and STAT1 thus indicate that the genes are regulated through different pathways. Finally, infection of TO cells with infectious salmon anemia virus (ISAV) induced early synthesis of STAT1 mRNA, whereas IRF-7 transcripts were upregulated much later. This indicates that ISAV has mechanisms to antagonize IRF-7 transcription and thus also the IFN system in Atlantic salmon.