abstract
- Baseline biogeochemical surveys of natural environments is an often overlooked field of environmental studies. Too often research begins once contamination has occurred, with a knowledge gap as to how the affected area behaved prior to outside (often anthropogenic) influences. These baseline characterizations can provide insight into proposed bioremediation strategies crucial in cleaning up chemical spill sites or heavily mined regions. Hence, this study was conducted to survey the in-situ microbial activity within freshwater hydrocarbon-rich environments cutting through the McMurray formation - the geologic strata constituting the oil sands. We are the first to report in-situ functional variations among these freshwater microbial ecosystems using metatranscriptomics, providing insight into the in-situ gene expression within these naturally hydrocarbon-rich sites. Key genes involved in energy metabolism (nitrogen, sulfur and methane) and hydrocarbon degradation, including transcripts relating to the observed expression of methane oxidation are reported. This information provides better linkages between hydrocarbon impacted environments, closing knowledge gaps for optimizing not only oil sands mine reclamation but also enhancing microbial reclamation strategies in various freshwater environments. These finding can also be applied to existing contaminated environments, in need of efficient reclamation efforts.