Skeletal muscle fiber-type-specific changes in markers of capillary and mitochondrial content after low-volume interval training in overweight women
Journal Articles
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
High-intensity interval training (HIIT) enhances skeletal muscle oxygen delivery and utilization but data are limited regarding fiber-specific adaptations in humans. We examined the effect of 18 sessions of HIIT (10 × 60-sec cycling intervals at ~90% HRmax , interspersed by 60-sec of recovery) over 6 weeks on markers of microvascular density and oxidative capacity in type I and II fibers in healthy but sedentary young women (Age: 26 ± 7 years; BMI: 30 ± 4 kg·m-2 ; VO2peak : 2.16 ± 0.45 L·m-1 ). Immunohistochemical analyses of muscle cross sections revealed a training-induced increase in capillary contacts per fiber in type I fibers (PRE: 4.38 ± 0.37 vs. POST: 5.17 ± 0.80; main effect, P < 0.05) and type II fibers (PRE: 4.24 ± 0.55 vs. POST: 4.92 ± 0.54; main effect, P < 0.05). The capillary-to-fiber ratio also increased after training in type I fibers (PRE: 1.53 ± 1.44 vs. POST: 1.88 ± 0.38; main effect, P < 0.05) and type II fibers (PRE: 1.45 ± 0.19 vs. POST: 1.76 ± 0.27; main effect, P < 0.05). Muscle oxidative capacity as reflected by the protein content of cytochrome oxidase IV also increased after training in type I fibers (PRE: 3500 ± 858 vs. POST: 4442 ± 1377 arbitrary units; main effect, P < 0.01) and type II fibers (PRE: 2632 ± 629 vs. POST: 3863 ± 1307 arbitrary units; main effect, P < 0.01). We conclude that short-term HIIT in previously inactive women similarly increases markers of capillary density and mitochondrial content in type I and type II fibers.