Transformation of human cultured fibroblasts with plasmids carrying dominant selection markers and immortalizing potential Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • The disadvantages of using human cultured cells for biochemical and genetic studies are their limited lifespan in vitro and their lack of chemical selection markers. These problems are now overcome by transfecting human cultured fibroblasts with the pSV3-gpt and pSV3-neo plasmid DNA which carry genes coding for the immortalizing SV40 large T-antigen and dominant selection markers. Transformed human fibroblasts were obtained at a frequency of about 10(-5) with both selection systems. These transformed cells showed a twofold increase in growth rate and three to tenfold increase in cell number at confluence. The improved growth characteristics were associated with the expression of the SV40 T-antigen detected with immunoprecipitation. These cell lines also changed from their usual spindle shapes to an epithelioid morphology characteristic of transformed cells. From 60 to 100% of the cells transfected with pSV3 plasmid DNA demonstrated numerical and structural abnormalities in their karyotypes. Cells transfected with DNA from a similar plasmid, pSV2-neo, which differed from the pSV3-neo plasmid only by missing the sequence encoding the complete early region of SV40, neither expressed T-antigen nor showed any change in morphology, improvement in growth characteristics or abnormalities in karyotype. However, they were still selectable with the aminoglycoside G-418. Therefore, by appropriate choice of vector plasmids, dominant selection markers and improved growth characteristics can be imparted separately or simultaneously to human fibroblasts. The morphological, biochemical and chromosomal changes resulting from such transformations must be recognized in using this approach for biochemical and genetic studies.

publication date

  • December 1986