Mechanisms linked to differences in the mutagenic potential of 1,3-dinitropyrene and 1,8-dinitropyrene Academic Article uri icon

  • Overview
  • Research
  • Identity
  • Additional Document Info
  • View All


  • This study explores and characterizes the toxicity of two closely related carcinogenic dinitro-pyrenes (DNPs), 1,3-DNP and 1,8-DNP, in human bronchial epithelial BEAS-2B cells and mouse hepatoma Hepa1c1c7 cells. Neither 1,3-DNP nor 1,8-DNP (3-30 μM) induced cell death in BEAS-2B cells. In Hepa1c1c7 cells only 1,3-DNP (10-30 μM) induced a mixture of apoptotic and necrotic cell death after 24 h. Both compounds increased the level of reactive oxygen species (ROS) in BEAS-2B as measured by CM-H2DCFDA-fluorescence. A corresponding increase in oxidative damage to DNA was revealed by the formamidopyrimidine-DNA glycosylase (fpg)-modified comet assay. Without fpg, DNP-induced DNA damage detected by the comet assay was only found in Hepa1c1c7 cells. Only 1,8-DNP formed DNA adduct measured by 32P-postlabelling. In Hepa1c1c cells, 1,8-DNP induced phosphorylation of H2AX (γH2AX) and p53 at a lower concentration than 1,3-DNP and there was no direct correlation between DNA damage/DNA damage response (DR) and induced cytotoxicity. On the other hand, 1,3-DNP-induced apoptosis was inhibited by pifithrin-α, an inhibitor of p53 transcriptional activity. Furthermore, 1,3-DNP triggered an unfolded protein response (UPR), as measured by an increased expression of CHOP, ATF4 and XBP1. Thus, other types of damage possibly linked to endoplasmic reticulum (ER)-stress and/or UPR could be involved in the induced apoptosis. Our results suggest that the stronger carcinogenic potency of 1,8-DNP compared to 1,3-DNP is linked to its higher genotoxic effects. This in combination with its lower potency to induce cell death may increase the probability of causing mutations.


  • Holme, JA
  • Nyvold, HE
  • Tat, V
  • Arlt, VM
  • Bhargava, A
  • Gutzkow, KB
  • Solhaug, A
  • Låg, M
  • Becher, R
  • Schwarze, PE
  • Ask, Kjetil
  • Ekeren, L
  • Øvrevik, J

publication date

  • 2014