Glucosensing in an immortalized adrenomedullary chromaffin cell line: Role of ATP-sensitive K+ channels Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Using an immortalized adrenal chromaffin cell line (MAH cells), we investigated the cellular mechanisms underlying sensitivity to glucose-free solution (aglycemia) using ratiometric Ca2+ imaging and whole-cell recording. Though few cells (< 15%) responded to aglycemia with an increase in intracellular-free Ca2+ concentration ([Ca2+]i), in most cells (approximately 75%), aglycemia caused > 50% suppression of the Delta[Ca2+]i induced by the depolarizing stimulus, high (10 mM) K+. Moreover, in normal K+, the average aglycemia-induced rise in Cai2+ as well as the proportion of aglycemia-responsive cells increased in the presence of the K(ATP) channel blocker, glibenclamide. During membrane potential (Vm) measurements, aglycemia induced either hyperpolarization (6/20), depolarization (4/20) or no change in Vm. RT-PCR and Western blotting confirmed the presence of K(ATP) channel subunits Kir6.2 and SUR1 in MAH cells. These findings suggest a dual inhibitory and excitatory action of aglycemia in MAH cells, where activation of K(ATP) channels effectively inhibits or blunts the Delta[Ca2+]i due to the excitatory effect. Thus, this cell line appears as an attractive model for studying the molecular mechanisms of glucosensing.

publication date

  • November 2008