abstract
- We address a two-dimensional nonlinear elliptic problem with a finite-amplitude periodic potential. For a class of separable symmetric potentials, we study the bifurcation of the first band gap in the spectrum of the linear Schr\"{o}dinger operator and the relevant coupled-mode equations to describe this bifurcation. The coupled-mode equations are derived by the rigorous analysis based on the Fourier--Bloch decomposition and the Implicit Function Theorem in the space of bounded continuous functions vanishing at infinity. Persistence of reversible localized solutions, called gap solitons, beyond the coupled-mode equations is proved under a non-degeneracy assumption on the kernel of the linearization operator. Various branches of reversible localized solutions are classified numerically in the framework of the coupled-mode equations and convergence of the approximation error is verified. Error estimates on the time-dependent solutions of the Gross--Pitaevskii equation and the coupled-mode equations are obtained for a finite-time interval.