Hydrological Response of a Patchy High Arctic Wetland Conferences uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • High Arctic patchy wetlands are ecological oases in a polar desert environment and are vulnerable to climatic warming. At present, understanding of their responses to external factors (climate and terrain) is limited. This study examines a wetland located in a topographic depression maintained by seasonal snowmelt, ground ice melt and lateral inflows. The wetland is located on Cornwallis Island, Nunavut, Canada. Hydrological, climatological and soil observations were made over several summers with different weather conditions. The summers of 1996 and 1997 were cool and wet but the summer of 1998 was warm and dry. The melt in 1996 was rapid due to rain on snow events and only lasted six days. Deeper snow in 1997 prolonged the melt season to 18 days. A shallow snow-cover in 1998 and early melt depleted the snow by early June. Surface, groundwater and storage fluctuations in the wetland were dictated by snowmelt, rainfall, evaporation loss from the wetland and lateral inputs which in turn were controlled by the melting of the late-lying snow storage in the catchment. Soil factors influence the spatial variations in ground thaw which affects the surface and subsurface flow. Streamflow response of the wetland reflects a nival regime and augmentation of streamflow thoughout the summer season in all three years is supported by multiple water sources: ground ice melt and suprapermafrost water from a large late-lying snowpack. Overall, this study suggests that the survival of some patchy wetlands depends on their interaction with the surrounding basin, with a dependency probably being more important during warm and dry seasons.

publication date

  • August 1, 2000