Boundary and border considerations in hydrology Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • AbstractThis paper examines several issues related to hydrological boundaries and their border zones. In a two‐dimensional space, a boundary is a line that separates two domains possessing different hydrological properties or dominated by different hydrological processes, and a border is an area that experiences an edge effect owing to transitions or mixing of processes. Hydrological boundaries may be static, such as drainage divides, or dynamic, such as the edges of a seasonal snow cover. They may be open or closed to the transfer of matter and energy, although most boundaries tend to be perforated, permitting different rates of movement across different segments. Borders may be narrow or the edge effect can affect large areas, as happens to the sensible heat flux over a highly fragmented melting snowfield. The introduction of artificial boundaries, notably the grid patterns of remote sensing pixels, digital elevation models and land surface schemes, gives rise to problems of mismatch with the natural hydrological boundaries. Incorrect demarcation, omission and generalization of boundaries can produce errors that are hard to rectify. Serious biases are involved when point observations are used to calibrate parameters or to validate model outputs integrated over a bounded area. Examples are drawn mainly from cold climate hydrology to illustrate the boundary issues but the questions transcend disciplinary areas. The intent of this presentation is to stimulate discussions that could be a prelude to finding solutions to many boundary problems which have thus far eluded hydrological investigations. Copyright © 2004 John Wiley & Sons, Ltd.

publication date

  • May 2004