Sequence variation at the major histocompatibility complex DRB loci in beluga ( Delphinapterus leucas ) and narwhal ( Monodon monoceros ) Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • The variation at loci with similarity to DRB class II major histocompatibility complex loci was assessed in 313 beluga collected from 13 sampling locations across North America, and 11 narwhal collected in the Canadian high Arctic. Variation was assessed by amplification of exon 2, which codes for the peptide binding region, via the polymerase chain reaction, followed by either cloning and DNA sequencing or single-stranded conformation polymorphism analysis. Two DRB loci were identified in beluga: DRB1, a polymorphic locus, and, DRB2, a monomorphic locus. Eight alleles representing five distinct lineages (based on sequence similarity) were found at the beluga DRB1 locus. Although the relative number of alleles is low when compared with terrestrial mammals, the amino acid variation found among the lineages is moderate. At the DRB1 locus, the average number of nonsynonymous substitutions per site is greater than the average number of synonymous substitutions per site (0.0806 : 0.0207, respectively; P<0.01). Most of the 31 amino acid substitutions do not conserve the physiochemical properties of the residue, and 21 of these are located at positions implicated as forming pockets responsible for the selective binding of foreign peptide side chains. Only DRB1 variation was examined in 11 narwhal, revealing a low amount of variation. These data are consistent with an important role for the DRB1 locus in the cellular immune response of beluga. In addition, the ratio of nonsynonymous to synonymous substitutions is similar to that among primate alleles, arguing against a reduction in the balancing selection pressure in the marine environment. Two hypotheses may explain the modest amount of Mhc variation when compared with terrestrial mammals: small population sizes at speciation or a reduced neutral substitution rate in cetaceans.

publication date

  • August 27, 1998