Seasonal hydrochemistry of a high Arctic wetland complex Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • AbstractThe seasonal evolution in the hydrochemistry of four types of wetland (pond, ice wedge trough, wet meadow and mesic site) was studied in a 0·5 km2 wetland complex in the Canadian High Arctic on the Fosheim Peninsula, Ellesmere Island. In the spring, a large influx of overland runoff from snowmelt quickly flushed away the solutes of the ice stored on the wetland surface over the winter, and homogenized the hydrochemistry across the entire wetland complex. As the surface flow receded, various wetland patches became hydrologically disconnected and their hydrochemical characteristics evolved differently. Although underlain by marine sediments and saline permafrost, solute concentrations in much of the wetland complex remained dilute compared with many Arctic wetlands. Through continued evaporation, melting of ground ice and localized thermokarst activities, the hydrochemistry of different wetland types acquired their distinctive characteristics as the summer progressed. This study demonstrates that large diversity in wetland hydrochemistry occurs even within a limited area, indicating the need to caution against generalizations based on limited spatial and temporal samples. Copyright © 2009 John Wiley & Sons, Ltd.

publication date

  • May 15, 2009