Carbon and greenhouse gas balances in an age-sequence of temperate pine plantations Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Abstract. This study investigated differences in the magnitude and partitioning of the carbon (C) and greenhouse gas (GHG) balances in an age-sequence of four white pine (Pinus strobus L.) afforestation stands (7, 20, 35 and 70 years old as of 2009) in southern Ontario, Canada. The 4 year (2004–2008) mean annual carbon dioxide (CO2) exchanges, based on biometric and eddy covariance data, were combined with the 2-year means of static chamber measurements of methane (CH4) and nitrous oxide (N2O) fluxes (2006–2007) and dissolved organic carbon (DOC) export below 1 m soil depth (2004–2005). The total ecosystem C pool increased with age from 9 to 160 t C ha−1 across the four stands. Rates of organic matter cycling (i.e. litter-fall and decomposition) were similar among the three older stands. In contrast, considerable differences related to stand age and site quality were observed in the magnitude and partitioning of individual CO2 fluxes showing a peak in production and respiration rates in the middle-age (20 year-old) stand growing on fertile post-agricultural soil. The DOC export accounted for 10% of net ecosystem production (NEP) at the 7 year old stand but < 2% at the three older stands. The GHG balance from the combined exchanges of CO2, CH4 and N2O fluxes was 2.6, 21.6, 13.5 and 4.8 t CO2 eq ha−1 yr−1 for the 7, 20, 35, and 70 year-old stands, respectively. The maximum annual contribution from the combined exchanges of CH4, N2O and DOC to the GHG balance was 8% and 15% in the 7 and 70 year-old stands, respectively, but < 1% in the two highly productive middle-age (20 and 35 year-old) stands. Averaged over the entire age-sequence, the CO2 exchange was the main driver of the GHG balance in these forests. The cumulative CO2 sequestration over the 70 years was estimated at 129 \\unit{t} C and 297 t C ha−1 yr−1 for stands growing on low and high productive sites, respectively. This study highlights the importance of accounting for age and site quality effects on forest C and GHG balances. It further demonstrates a large potential for C sequestration and climate benefits (i.e. cooling effect) gained through afforestation of marginal agricultural and fallow lands in temperate regions.

publication date

  • June 5, 2014