Seismic analysis of links of various lengths in eccentrically braced frames Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Eccentrically braced steel frames have excellent elastic stiffness under moderate lateral loads and good ductility when subjected to severe seismic loading conditions. Under extreme loading, the inelastic behaviour is designed to be confined to a ductile link element. The behaviour of links of various lengths in eccentrically braced frames is evaluated using a finite element model. The link is subjected to extreme cyclic loading simulating a severe earthquake. The effect of the link length on its performance, capacity for energy dissipation, plastic mechanisms, and mode of failure are investigated. Measures for improving the performance of long links are examined. It was found that the most efficient link is the short shear link. However, the short link deformation is characterized by large angles of deformation, which may cause substantial damage to the nonstructural elements. On the other hand, long links were found to have smaller angles of deformation than short links, but with reduced ductility levels. An effective approach to improve the performance of long links is by increasing the flange thickness of the link section with the appropriate adjustment to the stiffener design. This technique can be applied to links of length up to 1.4 times the critical shear link length. Key words: steel, eccentric, braced, frame, link, seismic, ductility, design.

publication date

  • February 1, 1991