Home
Scholarly Works
Regulation of slow wave frequency by IP3-sensitive...
Journal article

Regulation of slow wave frequency by IP3-sensitive calcium release in the murine small intestine

Abstract

Slow waves determine frequency and propagation characteristics of contractions in the small intestine, yet little is known about mechanisms of slow wave regulation. We propose a role for intracellular Ca(2+), inositol 1,4,5,-trisphosphate (IP(3))-sensitive Ca(2+) release, and sarcoplasmic reticulum (SR) Ca(2+) content in the regulation of slow wave frequency because 1) 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-AM, a cytosolic Ca(2+) chelator, reduced the frequency or abolished the slow waves; 2) thapsigargin and cyclopiazonic acid (CPA), inhibitors of SR Ca(2+)-ATPase, decreased slow wave frequency; 3) xestospongin C, a reversible, membrane-permeable blocker of IP(3)-induced Ca(2+) release, abolished slow wave activity; 4) caffeine and phospholipase C inhibitors (U-73122, neomycin, and 2-nitro-4-carboxyphenyl-N,N-diphenylcarbamate) inhibited slow wave frequency; 5) in the presence of CPA or thapsigargin, stimulation of IP(3) synthesis with carbachol, norepinephrine, or phenylephrine acting on alpha(1)-adrenoceptors initially increased slow wave frequency but thereafter increased the rate of frequency decline, 6) thimerosal, a sensitizing agent of IP(3) receptors increased slow wave frequency, and 7) ryanodine, a selective modulator of Ca(2+)-induced Ca(2+) release, had no effect on slow wave frequency. In summary, these data are consistent with a role of IP(3)-sensitive Ca(2+) release and the rate of SR Ca(2+) refilling in regulation of intestinal slow wave frequency.

Authors

Malysz J; Donnelly G; Huizinga JD

Journal

AJP Gastrointestinal and Liver Physiology, Vol. 280, No. 3, pp. g439–g448

Publisher

American Physiological Society

Publication Date

March 1, 2001

DOI

10.1152/ajpgi.2001.280.3.g439

ISSN

0193-1857

Contact the Experts team