Home
Scholarly Works
JPMAX: Learning to Recognize Moving Objects as a...
Conference

JPMAX: Learning to Recognize Moving Objects as a Model-fitting Problem

Abstract

Unsupervised learning procedures have been successful at low-level feature extraction and preprocessing of raw sensor data. So far, however, they have had limited success in learning higher-order representations, e.g., of objects in visual images. A promising approach is to maximize some measure of agreement between the outputs of two groups of units which receive inputs physically separated in space, time or modality, as in (Becker and Hinton, 1992; Becker, 1993; de Sa, 1993). Using the same approach, a much simpler learning procedure is proposed here which discovers features in a single-layer network consisting of several populations of units, and can be applied to multi-layer networks trained one layer at a time. When trained with this algorithm on image sequences of moving geometric objects a two-layer network can learn to perform accurate position-invariant object classification.

Authors

Becker S

Volume

7

Pagination

pp. 933-940

Publication Date

January 1, 1994

Conference proceedings

Advances in Neural Information Processing Systems

ISSN

1049-5258

Labels

Fields of Research (FoR)

Contact the Experts team