Home
Scholarly Works
The major site of tyrosine phosphorylation in...
Journal article

The major site of tyrosine phosphorylation in polyomavirus middle T antigen is not required for transformation

Abstract

The induction of tumors and cellular transformation mediated by polyomavirus requires the action of middle T antigen. Accordingly, we have begun to define the domains of the viral protein important for these processes to learn more about its site and mechanism of action. One of the domains of middle T antigen which is thought to be important for its function includes a stretch of acidic amino acids and a vicinal tyrosine residue (tyrosine 315), the major site of tyrosine phosphorylation in vitro. To determine whether these acidic amino acids and tyrosine 315 are required to maintain the transforming activity of middle T antigen, we constructed deletions within the DNA sequences encoding these amino acids and measured the capacity of the resulting mutants to transform Rat-1 cells in culture. This was accomplished by using in vitro mutagenesis techniques with molecularly cloned polyomavirus DNA. Seven mutants were isolated. Five of these proved incapable of transforming Rat-1 cells and were found to contain deletions which altered the reading frame for middle T antigen. However, two mutants, pPdl1-4 and pPdl2-7, retained the capacity to transform Rat-1 cells at high frequencies. The middle T antigen encoded by one of these mutants, pPdl1-4, lacks part of the acidic string of amino acids but not tyrosine 315 (amino acids 304 through 310 are deleted), whereas the middle T antigen encoded by the other mutant, pPdl2-7, lacks the entire acidic amino acid stretch as well as tyrosine 315 (amino acids 285 through 323 are deleted). Rat-1 cells transformed by one or the other mutant DNA displayed a fully transformed phenotype, including the capacity to form tumors in animals. These results prove that the major site of tyrosine phosphorylation in middle T antigen and the acidic amino acids which precede it are not essential for its transforming activity.

Authors

Mes-Masson AM; Schaffhausen B; Hassell JA

Journal

Journal of Virology, Vol. 52, No. 2, pp. 457–464

Publisher

American Society for Microbiology

Publication Date

January 1, 1984

DOI

10.1128/jvi.52.2.457-464.1984

ISSN

0022-538X

Contact the Experts team